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CS1660: Announcements

u Course updates

u Project 1 “Cryptography” is out

u Reminder

u Enrolling to advanced version (via 1620 or 2660) is only for educational purposes

u Only for this term: It’s unrelated to “Capstone”
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Last class

u Cryptography

u Secret communication

u Symmetric-key encryption & classical ciphers

u Perfect secrecy & the One-Time Pad
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Today

u Cryptography

u Encryption in practice

u Computational security, pseudo-randomness
u Stream & block ciphers, modes of operations for encryption, DES & AES
u Introduction to modern cryptography
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4.1 Symmetric encryption, 
revisited: OTP with 
pseudorandomness
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Big picture

Secret communication

u We learned what it means for a cipher to be perfectly secure

u We learned that the simple OTP cipher achieves this property

u XOR (mask) message (once) with the secret key (random pad)

u …but it cannot be used in practice!

u We learned how we can fix this problem

u just use OTP with a freshly-generated “random looking” pads

u mask each message once with a pseudorandom pad
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Big picture (cont.)

Secret communication

u But there is no free lunch…

u if we mask each message once with a pseudorandom pad,
we must lose perfect secrecy!

u because “random looking” pads are not random…

u But not perfect won’t be imperfect – it will be close to perfect

u for all practical purposes

u “random looking” pads will be as random as truly random ones
u OTP + pseudo-randomness will be as secure as (standard) OTP 
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Perfect secrecy & randomness

Role of randomness in encryption is integral

u in a perfectly secret cipher, the ciphertext doesn’t depend on the message

u the ciphertext appears to be truly random

u the uniform key-selection distribution is imposed also onto produced ciphertexts

u e.g., c = k XOR m (for uniform k and any distribution over m)

When security is computational, randomness is relaxed to “pseudorandomness”

u the ciphertext appears to be “pseudorandom”

u it cannot be efficiently distinguished from truly random
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Symmetric encryption as “OPT with pseudorandomness”
Stream cipher
Uses a short key to encrypt long symbol 
streams into a pseudorandom ciphertext

u based on abstract crypto primitive of 
pseudorandom generator (PRG)

Block cipher
Uses a short key to encrypt blocks of symbols 
into pseudorandom ciphertext blocks

u based on abstract crypto primitive of
pseudorandom function (PRF)
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4.2 Computational 
security
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The big picture: OPT is perfect but impractical!

We formally defined and constructed the perfectly secure OTP cipher

u This scheme has some major drawbacks

u it employs a very large key which can be used only once!

u Such limitations are unavoidable and make OTP not practical

u why?
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Our approach: Relax perfectness for cipher security 

Initial model

u Perfect secrecy (or security) guarantees that 

u the ciphertext leaks (absolutely) no extra information about the plaintext 

u (unconditionally) to adversaries of unlimited computational power

Refined model

u Computational security guarantees a relaxed notion of security, namely that

u the ciphertext leaks a tiny amount of extra information about the plaintext

u to adversaries with bounded computational power
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Computational security

General concept in Cryptography

Computational security of a cryptographic scheme guarantees that

u (1) the scheme can be broken only with a tiny likelihood

u (2) by adversaries with bounded computational power

In contrast to perfect or information-theoretic or unconditional security

u which is typically harder, more costly or, often impossible, to achieve
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Computational security (cont.)

General concept in Cryptography

u de facto model for security in most settings

u based on an underlying hardness (computational) assumption

u integral part of modern cryptography

u still allowing for rigorous mathematical proof of security

u Asymptotic description of results

“A scheme is computationally secure if 
any efficient attacker succeeds in breaking it

with at most negligible probability”
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Computational security (cont.)

General concept in Cryptography

u entails two relaxations

u security is guaranteed against efficient adversaries

u if an attacker invests in sufficiently large resources, it may break security

u goal: make required resources larger than those available to any realistic attacker!

u security is guaranteed in a probabilistic manner

u with some small probability, an attacker may break security

u goal: make attack probability sufficiently small so that it can be practically ignored!
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Security relaxation for encryption

Perfect security: |k| = 128 bits, M, EncK(M) are independent, unconditionally
u no extra information is leaked to any attacker

Computational security: M, EncK(M) are independent, for all practical purposes
u no extra information is leaked but a tiny amount 

u e.g., with prob. 2-128  (or much less than the likelihood of being hit by lighting)
u to computationally bounded attackers

u e.g., who cannot count to 2128     (or invest work of more than one century)

u attacker’s best strategy remains ineffective

u random guess a secret key or exhaustive search over key space (brute-force attack)
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Towards a rigorous definition of computational security

Concrete approach

u “A scheme is (t,ε)-secure if any attacker A, running for time at most t, succeeds in 
breaking the scheme with probability at most ε”

Asymptotic approach

u “A scheme is secure if any efficient attacker A succeeds in breaking the scheme with 
at most negligible probability”
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Examples
u almost optimal security guarantees

u if key length n, the number of possible keys is 2n

u attacker running for time t succeeds w/ prob. at most ~ t/2n (brute-force attack)

u if n = 60, security is enough for attackers running a desktop computer

u 4 GHz (4x109 cycles/sec), checking all 260 keys require about 9 years

u if n = 80, a supercomputer would still need ~2 years

u today’s recommended security parameter is at least n = 128

u large difference between 280 and 2128; e.g., #seconds since Big Bang is ~258

u a once-in-100-years event corresponds to probability 2-30 of happening at a particular sec

u if within 1 year of computation attack is successful w/ prob. 1/260

then it is more likely that Alice and Bob are hit by lighting
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Examples: Big Numbers in the real world

u Odds for all 5 numbers + Powerball 

u  292x106 => 238

u The Age of the Universe in Seconds 

u 4.3×1017 => 258

u  # of cycles in a century of a 4 GHz CPU => 264

u  # of arrangements of a Rubik's cube 4.3×1019 => 265

u  Atoms in the Earth 1.33x1050 => 2166

u  Electrons in the universe 1080 => 2266
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4.3 Introduction to 
modern cryptography
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Cryptography / cryptology

u Etymology

u two parts:   “crypto” + “graphy”  / “logy”

u original meaning:  κρυπτός +  γράφω    /  λόγος      (in Greek)

u English translation:  secret   +    write      /  speech, logic

u meaning:   secret writing           /  the study of secrets

u Historically developed/studied for secrecy in communications

u i.e., message encryption in the symmetric-key setting

u main application area: use by military and governments
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Classical cryptography Vs. modern cryptography

antiquity – ~70s

u “the art or writing and solving codes”

u approach

u ad-hoc design
u trial & error methods
u empirically evaluated

~80s – today

u “the study of mathematical techniques 
for securing digital information, systems, 
and distributed computations again 
adversarial attacks”

u approach
u systematic development & analysis
u formal notions of security / adversary
u rigorous proofs of security (or insecurity)
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Example: Classical Vs. modern cryptography for encryption

antiquity – ~70s

“the art of writing and solving codes”

u ad-hoc study
u vulnerabilities/insecurity of

u Caesar's cipher

u shift cipher

u mono-alphabetic substitution cipher

~80s – today

“the study of mathematical techniques for 
securing information, systems, and distributed 
computations against adversarial attacks”

u rigorous study
u problem statement: secret communication over 

insecure channel
u abstract solution concept: symmetric encryption, 

Kerckhoff’s principle, perfect secrecy
u concrete solution & analysis: OTP cipher, proof of 

security
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Example: Differences of specific ciphers

Caesar’s/shift/mono-alphabetic cipher

u substitution ciphers
u Caesar's cipher

u shift is always 3

u shift cipher

u shift is unknown but
the same for all characters

u mono-alphabetic substitution/Vigènere cipher
u shift is unknown but 

the same for all/many character occurrences 

The one-time pad

u also, a substitution cipher
u shift is unknown and 

independent for each character occurrence
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Approach in modern cryptography

Formal treatment
u fundamental notions underlying the design & evaluation of crypto primitives

Systematic process
u A) formal definitions  (what it means for a crypto primitive to be “secure”?) 

u B) precise assumptions  (which forms of attacks are allowed – and which aren’t?)

u C) provable security   (why a candidate instantiation is indeed secure – or not)?
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Secure against what?

u “Security” has no meaning per se…

u The security of a system, application, or protocol is always relative to

u A set of desired properties

u An adversary with specific capabilities

u Difficult to define general rules for security

u Adapt best practices, heuristics based on the system we are considering!
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Example: Physical safes
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TL-15 ($3,000)
15 minutes with 
common tools

TL-30 ($4,500)
30 minutes with 
common tools 

TRTL-30 ($10,000)
30 minutes with 

common tools and a 
cutting torch

TXTL-60 (>$50,000)
60 minutes with 
common tools, a 

cutting torch, and up 
to 4 oz of explosives



The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…
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The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…
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A) Formal definitions

abstract but rigorous description of security problem 

u computing setting        (to be considered)

u involved parties, communication model, core functionality

u underlying cryptographic scheme      (to be designed)

u e.g., symmetric-key encryption scheme

u desired properties         (to be achieved) 

u security related

u non-security related

u e.g., correctness, efficiency, etc.
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Why formal definitions are important?

u successful project management

u good design requires clear/specific security goals

u helps to avoid critical omissions or over engineering

u provable security

u rigorous evaluation requires a security definition

u helps to separate secure from insecure solutions

u qualitative analysis/modular design

u thorough comparison requires an exact reference

u helps to secure complex computing systems
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Example: Problem at hand

abstract but rigorous description of security problem (to be solved)
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secret communication

Insecure channel



Example: Formal definitions (1)

u computing setting        (to be considered)

u e.g., involved parties, communication model, core functionality
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Eve

BobAlice m

Alice, Bob, Eve

Alice wants to send a message m to Bob; Eve can eavesdrop sent messages

Alice/Bob may transform the transmitted/received message and share info



Example: Formal definitions (2)

u underlying cryptographic scheme     (to be designed)

 symmetric-key encryption scheme

u Alice and Bob share and use a key k

u Alice encrypts plaintext m to ciphertext c and sends c instead of m

u Bob decrypts received c to get a message m’
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Eve
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Example: Formal definitions (3)

u desired properties         (to be achieved) 

u security (informal)

u correctness (informal)
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Eve

Alice Bobm cencrypt

k k

decrypt mc

Eve “cannot learn” m (from c)

If Alice encrypts m to c, then Bobs decrypts c to (the original message) m



Example: Probabilistic view of symmetric encryption

A symmetric-key encryption scheme is defined by

u a message space M, |M| > 1, and a triple (Gen, Enc, Dec)

u Gen: probabilistic key-generation algorithm, defines key space K

u Gen(1n) → k ∈ K   (security parameter n)

u Enc: probabilistic encryption algorithm, defines ciphertext space C 

u Enc: K × M → C , Enc(k, m) = Enck(m) → c ∈ C 

u Dec: deterministic encryption algorithm

u Dec: K × C → M , Dec(k, c) = Deck(c) := m ∈M      or ⊥
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Example: Formal definitions (4)
Perfect correctness

u for any k ∈ K , m ∈ M and any ciphertext c output of Enck(m), it holds that

Pr[ Deck (c) = m ] = 1
Perfect security (or information-theoretic security)

u the adversary should be able to learn no additional information on m
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Eve

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve

c

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve’s view 
remains 

the same!
random 

experiment
DM → m
DK → k

Enck(m) → c



Example: Equivalent definitions of perfect security

1) a posteriori = a priori

For every DM, m ∈M and c ∈ C, for 
which Pr [C = c ] > 0, it holds that

Pr[ M = m | C = c ] = Pr[ M = m ]

2) C is independent of M

For every m, m’ ∈M and c ∈ C, 
it holds that

Pr[ EncK(m) = c ] = Pr[ EncK(m’) = c ]
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3) indistinguishability

For every A, it holds that
Pr[ b’ = b ] = 1/2

AT m0, m1

DK → k
{0, 1} → b

Enck(mb) → cb

cb

b’

|m0|=|m1|



From perfect to computational EAV-security

u perfect security: M, EncK(M) are independent

u absolutely no information is leaked about the plaintext 

u to adversaries that unlimited computational power

u computational security: for all practical purposes, M, EncK(M) are independent

u a tiny amount of information is leaked about the plaintext (e.g., w/ prob. 2-60)

u to adversaries with bounded computational power (e.g., attacker invests 200ys) 

u attacker’s best strategy remains ineffective

u random guess on secret key; or

u exhaustive search over key space (brute force attack)
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Relaxing indistinguishability

Relax the definition of perfect secrecy – that is based on indistinguishability

u require that m0, m1 are chosen by a PPT adversary 

u require that no PPT adversary can distinguish Enck(m0) from Enck(m1) 

     non-negligibly better than guessing
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3) indistinguishability

For every A, it holds that
Pr[ b’ = b ] = 1/2

AT m0, m1

DK → k
{0, 1} → b

Enck(mb) → cb

cb

b’

PPT

PPT

negl

+ negl |m0|=|m1|



The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…
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B) Why precise assumptions are important?

u basis for proofs of security   

u security holds under specific assumptions

u comparison among possible solutions

u relations among different assumptions

u stronger/weaker (i.e., less/more plausible to hold), “A implies B” or “A and B are equivalent”

u refutable Vs. non-refutable

u flexibility (in design & analysis)

u validation – to gain confidence or refute

u modularity – to choose among concrete schemes that satisfy the same assumptions

u characterization – to identify simplest/minimal/necessary assumptions
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Example: Precise assumptions (1)

u adversary
u type of attacks – a.k.a. threat model

u capabilities (e.g., a priori knowledge, access to information, party corruptions)
u limitations (e.g., bounded memory, passive Vs. active)
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Eve

Alice Bobm

eavesdropping

Eve may know the a priori distribution of messages sent by Alice

Eve doesn’t know/learn the secret k (shared by Alice and Bob)

cencrypt

k k

decrypt mc



Example: Precise assumptions (2)

u computational assumptions (about hardness of certain tasks)
u e.g., factoring of large composite numbers is hard
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Eve

Alice Bobm

no computational assumptions 
– a.k.a. perfect secrecy (or information-theoretic security)

cencrypt

k k

decrypt mc



Example: Precise assumptions (3)

u computing setting
u system set up, initial state, key distribution, randomness…

u means of communication (e.g., channels, rounds, messages…)
u timing assumptions (e.g., synchronicity, epochs, …)
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Eve

Alice Bobm

key k is generated 
randomly using 
the uniform 
distribution

cencrypt

k k

decrypt mc

key k is securely distributed to and securely stored at Alice and Bob 

one message m is only communicated
(for simplicity in our initial security definition)

k, m are chosen independently



Possible eavesdropping attacks (I)
An attacker may possess a

u (a) collection of ciphertexts
u ciphertext only attack

u this will be the default attack type 
when we will next define the 
concept of perfect security
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Hi, Bob.
Don’t invite 

Eve to the 
party! 

Love, Alice

Encryption
Algorithm

plaintext ciphertext

key
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Possible eavesdropping attacks (II)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack
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Possible eavesdropping attacks (III)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

u (c) collection of plaintext/ciphertext pairs 
      for plaintexts selected by the attacker 

u chosen plaintext attack
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Possible eavesdropping attacks (IV)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

u (c) collection of plaintext/ciphertext pairs 
      for plaintexts selected by the attacker 

u chosen plaintext attack

u (d) collection of plaintext/ciphertext pairs 
      for (plaintexts and) ciphertexts selected 
      by the attacker 

u chosen ciphertext attack
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IJCGA, CAN DO 
HIFFA GOT 
TIME.

plaintext ciphertext

key

001101
110111

(d)

Eve

Decryption
Algorithm



Main security properties against eavesdropping
“plain” security 

u protects against ciphertext-only attacks

u EAV-attack

“advanced” security

u protects against chosen plaintext attacks

u CPA-attack
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ATΠ

Game-based computational EAV-security
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m0, m1

Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is EAV-secure if any PPT adversary A guesses b correctly with 
probability at most 0.5 + ε(n), where ε is a negligible function

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing



ATΠ

Game-based computational EAV-security
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m0, m1

Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is EAV-secure if any PPT adversary A guesses b correctly with 
probability at most 0.5 + ε(n), where ε is a negligible function

Alternatively: 
“is semantically secure”

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing



ATΠ

Game-based computational CPA-security
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m0, m1Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is CPA-secure if any PPT adversary A guesses b correctly with 
probability at most 0.5 + ε(n), where ε is a negligible function

mi

ci
Enc(k,)

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing,
even when it learns the encryptions of messages of its choice 



On CPA security

Facts

u Any encryption scheme that is CPA-secure is also CPA-secure for multiple encryptions

u CPA security implies randomized encryption – can you see why?

u EAV-security for multiple messages implies randomized encryption
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The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

56



C) Provably security

Security

u subject to certain assumptions, a scheme is proved to be secure according to a 
specific definition, against a specific adversary

u in practice the scheme may break if

u some assumptions do not hold or the attacker is more powerful

Insecurity

u a scheme is proved to be insecure with respect to a specific definition

u it suffices to find a counterexample attack
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Why provable security is important?

Typical performance

u in some areas of computer science 
formal proofs may not be essential
u simulate hard-to-analyze algorithm to 

experimentally study 
its performance on “typical” inputs

u in practice, typical/average case occurs

Worst case performance

u in cryptography and secure protocol design 
formal proofs are essential

u “experimental” security analysis is not possible

u the notion of a “typical” adversary makes little 
sense and is unrealistic

u in practice, worst case attacks will occur
u an adversary will use any means 

in its power to break a scheme
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4.4 Pseudorandom 
generators 
(or stream ciphers)
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Stream ciphers

60
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Pseudorandom generators (PRGs)

Deterministic algorithm G that 
on input a seed s∈{0,1}t, outputs G(s)∈{0,1}l(t)

G is a PRG if:

u expansion

u for polynomial l, it holds that for any n, l(n) > n    

u models the process of extracting randomness from a short random string

u pseudorandomness

u no efficient statistical test can tell apart G(s) from a truly random string
61

s G(s) l(n)n
PRG 

G

a.k.a. stream cipher



Generic PRG-based symmetric encryption

u Fixed-length message encryption
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encryption scheme is plain-secure
as long as the underlying PRG is secure



Generic PRG-based symmetric encryption (cont.)

u Bounded- or arbitrary-length message encryption
u specified by a mode of operation for using an underlying stateful stream cipher,

repeatedly, to encrypt/decrypt a stream of symbols
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Stream ciphers: Modes of operations

u Bounded- or arbitrary-length message encryption
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on-the-fly computation of new pseudorandom bits, no IV needed, plain-secure

random IV used for every new message is sent along with ciphertext, advanced-secure


