
CS1660: Intro to Computer Systems Security
Spring 2026

Lecture 4: Confidentiality II
Instructor: Nikos Triandopoulos

February 3, 2026

https://brown-csci1660.github.io

https://brown-csci1660.github.io/
https://brown-csci1660.github.io/
https://brown-csci1660.github.io/

CS1660: Announcements

u Course updates

u Project 1 “Cryptography” is out

u Reminder

u Enrolling to advanced version (via 1620 or 2660) is only for educational purposes

u Only for this term: It’s unrelated to “Capstone”

2

Last class

u Cryptography

u Secret communication

u Symmetric-key encryption & classical ciphers

u Perfect secrecy & the One-Time Pad

3

Today

u Cryptography

u Encryption in practice

u Computational security, pseudo-randomness
u Stream & block ciphers, modes of operations for encryption, DES & AES
u Introduction to modern cryptography

4

4.1 Symmetric encryption,
revisited: OTP with
pseudorandomness

5

Big picture

Secret communication

u We learned what it means for a cipher to be perfectly secure

u We learned that the simple OTP cipher achieves this property

u XOR (mask) message (once) with the secret key (random pad)

u …but it cannot be used in practice!

u We learned how we can fix this problem

u just use OTP with a freshly-generated “random looking” pads

u mask each message once with a pseudorandom pad

6

Big picture (cont.)

Secret communication

u But there is no free lunch…

u if we mask each message once with a pseudorandom pad,
we must lose perfect secrecy!

u because “random looking” pads are not random…

u But not perfect won’t be imperfect – it will be close to perfect

u for all practical purposes

u “random looking” pads will be as random as truly random ones
u OTP + pseudo-randomness will be as secure as (standard) OTP

7

Perfect secrecy & randomness

Role of randomness in encryption is integral

u in a perfectly secret cipher, the ciphertext doesn’t depend on the message

u the ciphertext appears to be truly random

u the uniform key-selection distribution is imposed also onto produced ciphertexts

u e.g., c = k XOR m (for uniform k and any distribution over m)

When security is computational, randomness is relaxed to “pseudorandomness”

u the ciphertext appears to be “pseudorandom”

u it cannot be efficiently distinguished from truly random

8

Symmetric encryption as “OPT with pseudorandomness”
Stream cipher
Uses a short key to encrypt long symbol
streams into a pseudorandom ciphertext

u based on abstract crypto primitive of
pseudorandom generator (PRG)

Block cipher
Uses a short key to encrypt blocks of symbols
into pseudorandom ciphertext blocks

u based on abstract crypto primitive of
pseudorandom function (PRF)

9

EncryptionPlaintext Ciphertext
… RESTUOKD … rrywytovty

key

state

STU
(block)(next block)

EncryptionPlaintext Ciphertext
OKD tty

key

4.2 Computational
security

10

The big picture: OPT is perfect but impractical!

We formally defined and constructed the perfectly secure OTP cipher

u This scheme has some major drawbacks

u it employs a very large key which can be used only once!

u Such limitations are unavoidable and make OTP not practical

u why?

11

Now, what?

Our approach: Relax perfectness for cipher security

Initial model

u Perfect secrecy (or security) guarantees that

u the ciphertext leaks (absolutely) no extra information about the plaintext

u (unconditionally) to adversaries of unlimited computational power

Refined model

u Computational security guarantees a relaxed notion of security, namely that

u the ciphertext leaks a tiny amount of extra information about the plaintext

u to adversaries with bounded computational power

13

Computational security

General concept in Cryptography

Computational security of a cryptographic scheme guarantees that

u (1) the scheme can be broken only with a tiny likelihood

u (2) by adversaries with bounded computational power

In contrast to perfect or information-theoretic or unconditional security

u which is typically harder, more costly or, often impossible, to achieve

14

Computational security (cont.)

General concept in Cryptography

u de facto model for security in most settings

u based on an underlying hardness (computational) assumption

u integral part of modern cryptography

u still allowing for rigorous mathematical proof of security

u Asymptotic description of results

“A scheme is computationally secure if
any efficient attacker succeeds in breaking it

with at most negligible probability”

15

Computational security (cont.)

General concept in Cryptography

u entails two relaxations

u security is guaranteed against efficient adversaries

u if an attacker invests in sufficiently large resources, it may break security

u goal: make required resources larger than those available to any realistic attacker!

u security is guaranteed in a probabilistic manner

u with some small probability, an attacker may break security

u goal: make attack probability sufficiently small so that it can be practically ignored!

16

Security relaxation for encryption

Perfect security: |k| = 128 bits, M, EncK(M) are independent, unconditionally
u no extra information is leaked to any attacker

Computational security: M, EncK(M) are independent, for all practical purposes
u no extra information is leaked but a tiny amount

u e.g., with prob. 2-128 (or much less than the likelihood of being hit by lighting)
u to computationally bounded attackers

u e.g., who cannot count to 2128 (or invest work of more than one century)

u attacker’s best strategy remains ineffective

u random guess a secret key or exhaustive search over key space (brute-force attack)

17

Towards a rigorous definition of computational security

Concrete approach

u “A scheme is (t,ε)-secure if any attacker A, running for time at most t, succeeds in
breaking the scheme with probability at most ε”

Asymptotic approach

u “A scheme is secure if any efficient attacker A succeeds in breaking the scheme with
at most negligible probability”

18

Examples
u almost optimal security guarantees

u if key length n, the number of possible keys is 2n

u attacker running for time t succeeds w/ prob. at most ~ t/2n (brute-force attack)

u if n = 60, security is enough for attackers running a desktop computer

u 4 GHz (4x109 cycles/sec), checking all 260 keys require about 9 years

u if n = 80, a supercomputer would still need ~2 years

u today’s recommended security parameter is at least n = 128

u large difference between 280 and 2128; e.g., #seconds since Big Bang is ~258

u a once-in-100-years event corresponds to probability 2-30 of happening at a particular sec

u if within 1 year of computation attack is successful w/ prob. 1/260

then it is more likely that Alice and Bob are hit by lighting

19

Examples: Big Numbers in the real world

u Odds for all 5 numbers + Powerball

u 292x106 => 238

u The Age of the Universe in Seconds

u 4.3×1017 => 258

u # of cycles in a century of a 4 GHz CPU => 264

u # of arrangements of a Rubik's cube 4.3×1019 => 265

u Atoms in the Earth 1.33x1050 => 2166

u Electrons in the universe 1080 => 2266

20

4.3 Introduction to
modern cryptography

21

Cryptography / cryptology

u Etymology

u two parts: “crypto” + “graphy” / “logy”

u original meaning: κρυπτός + γράφω / λόγος (in Greek)

u English translation: secret + write / speech, logic

u meaning: secret writing / the study of secrets

u Historically developed/studied for secrecy in communications

u i.e., message encryption in the symmetric-key setting

u main application area: use by military and governments

22

Classical cryptography Vs. modern cryptography

antiquity – ~70s

u “the art or writing and solving codes”

u approach

u ad-hoc design
u trial & error methods
u empirically evaluated

~80s – today

u “the study of mathematical techniques
for securing digital information, systems,
and distributed computations again
adversarial attacks”

u approach
u systematic development & analysis
u formal notions of security / adversary
u rigorous proofs of security (or insecurity)

23

Example: Classical Vs. modern cryptography for encryption

antiquity – ~70s

“the art of writing and solving codes”

u ad-hoc study
u vulnerabilities/insecurity of

u Caesar's cipher

u shift cipher

u mono-alphabetic substitution cipher

~80s – today

“the study of mathematical techniques for
securing information, systems, and distributed
computations against adversarial attacks”

u rigorous study
u problem statement: secret communication over

insecure channel
u abstract solution concept: symmetric encryption,

Kerckhoff’s principle, perfect secrecy
u concrete solution & analysis: OTP cipher, proof of

security

24

Example: Differences of specific ciphers

Caesar’s/shift/mono-alphabetic cipher

u substitution ciphers
u Caesar's cipher

u shift is always 3

u shift cipher

u shift is unknown but
the same for all characters

u mono-alphabetic substitution/Vigènere cipher
u shift is unknown but

the same for all/many character occurrences

The one-time pad

u also, a substitution cipher
u shift is unknown and

independent for each character occurrence

25

Approach in modern cryptography

Formal treatment
u fundamental notions underlying the design & evaluation of crypto primitives

Systematic process
u A) formal definitions (what it means for a crypto primitive to be “secure”?)

u B) precise assumptions (which forms of attacks are allowed – and which aren’t?)

u C) provable security (why a candidate instantiation is indeed secure – or not)?

26

Secure against what?

u “Security” has no meaning per se…

u The security of a system, application, or protocol is always relative to

u A set of desired properties

u An adversary with specific capabilities

u Difficult to define general rules for security

u Adapt best practices, heuristics based on the system we are considering!

27

Example: Physical safes

28

TL-15 ($3,000)
15 minutes with
common tools

TL-30 ($4,500)
30 minutes with
common tools

TRTL-30 ($10,000)
30 minutes with

common tools and a
cutting torch

TXTL-60 (>$50,000)
60 minutes with
common tools, a

cutting torch, and up
to 4 oz of explosives

The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

29

The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

30

A) Formal definitions

abstract but rigorous description of security problem

u computing setting (to be considered)

u involved parties, communication model, core functionality

u underlying cryptographic scheme (to be designed)

u e.g., symmetric-key encryption scheme

u desired properties (to be achieved)

u security related

u non-security related

u e.g., correctness, efficiency, etc.

31

Why formal definitions are important?

u successful project management

u good design requires clear/specific security goals

u helps to avoid critical omissions or over engineering

u provable security

u rigorous evaluation requires a security definition

u helps to separate secure from insecure solutions

u qualitative analysis/modular design

u thorough comparison requires an exact reference

u helps to secure complex computing systems

32

Example: Problem at hand

abstract but rigorous description of security problem (to be solved)

33

secret communication

Insecure channel

Example: Formal definitions (1)

u computing setting (to be considered)

u e.g., involved parties, communication model, core functionality

34

Eve

BobAlice m

Alice, Bob, Eve

Alice wants to send a message m to Bob; Eve can eavesdrop sent messages

Alice/Bob may transform the transmitted/received message and share info

Example: Formal definitions (2)

u underlying cryptographic scheme (to be designed)

 symmetric-key encryption scheme

u Alice and Bob share and use a key k

u Alice encrypts plaintext m to ciphertext c and sends c instead of m

u Bob decrypts received c to get a message m’

35

Eve

Alice Bobm cencrypt

k k

decrypt mc

Example: Formal definitions (3)

u desired properties (to be achieved)

u security (informal)

u correctness (informal)

36

Eve

Alice Bobm cencrypt

k k

decrypt mc

Eve “cannot learn” m (from c)

If Alice encrypts m to c, then Bobs decrypts c to (the original message) m

Example: Probabilistic view of symmetric encryption

A symmetric-key encryption scheme is defined by

u a message space M, |M| > 1, and a triple (Gen, Enc, Dec)

u Gen: probabilistic key-generation algorithm, defines key space K

u Gen(1n) → k ∈ K (security parameter n)

u Enc: probabilistic encryption algorithm, defines ciphertext space C

u Enc: K × M → C , Enc(k, m) = Enck(m) → c ∈ C

u Dec: deterministic encryption algorithm

u Dec: K × C → M , Dec(k, c) = Deck(c) := m ∈M or ⊥

37

Example: Formal definitions (4)
Perfect correctness

u for any k ∈ K , m ∈ M and any ciphertext c output of Enck(m), it holds that

Pr[Deck (c) = m] = 1
Perfect security (or information-theoretic security)

u the adversary should be able to learn no additional information on m

38

Eve

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve

c

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve’s view
remains

the same!
random

experiment
DM → m
DK → k

Enck(m) → c

Example: Equivalent definitions of perfect security

1) a posteriori = a priori

For every DM, m ∈M and c ∈ C, for
which Pr [C = c] > 0, it holds that

Pr[M = m | C = c] = Pr[M = m]

2) C is independent of M

For every m, m’ ∈M and c ∈ C,
it holds that

Pr[EncK(m) = c] = Pr[EncK(m’) = c]

39

3) indistinguishability

For every A, it holds that
Pr[b’ = b] = 1/2

AT m0, m1

DK → k
{0, 1} → b

Enck(mb) → cb

cb

b’

|m0|=|m1|

From perfect to computational EAV-security

u perfect security: M, EncK(M) are independent

u absolutely no information is leaked about the plaintext

u to adversaries that unlimited computational power

u computational security: for all practical purposes, M, EncK(M) are independent

u a tiny amount of information is leaked about the plaintext (e.g., w/ prob. 2-60)

u to adversaries with bounded computational power (e.g., attacker invests 200ys)

u attacker’s best strategy remains ineffective

u random guess on secret key; or

u exhaustive search over key space (brute force attack)

40

Relaxing indistinguishability

Relax the definition of perfect secrecy – that is based on indistinguishability

u require that m0, m1 are chosen by a PPT adversary

u require that no PPT adversary can distinguish Enck(m0) from Enck(m1)

 non-negligibly better than guessing

41

3) indistinguishability

For every A, it holds that
Pr[b’ = b] = 1/2

AT m0, m1

DK → k
{0, 1} → b

Enck(mb) → cb

cb

b’

PPT

PPT

negl

+ negl |m0|=|m1|

The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

42

B) Why precise assumptions are important?

u basis for proofs of security

u security holds under specific assumptions

u comparison among possible solutions

u relations among different assumptions

u stronger/weaker (i.e., less/more plausible to hold), “A implies B” or “A and B are equivalent”

u refutable Vs. non-refutable

u flexibility (in design & analysis)

u validation – to gain confidence or refute

u modularity – to choose among concrete schemes that satisfy the same assumptions

u characterization – to identify simplest/minimal/necessary assumptions
43

Example: Precise assumptions (1)

u adversary
u type of attacks – a.k.a. threat model

u capabilities (e.g., a priori knowledge, access to information, party corruptions)
u limitations (e.g., bounded memory, passive Vs. active)

44

Eve

Alice Bobm

eavesdropping

Eve may know the a priori distribution of messages sent by Alice

Eve doesn’t know/learn the secret k (shared by Alice and Bob)

cencrypt

k k

decrypt mc

Example: Precise assumptions (2)

u computational assumptions (about hardness of certain tasks)
u e.g., factoring of large composite numbers is hard

45

Eve

Alice Bobm

no computational assumptions
– a.k.a. perfect secrecy (or information-theoretic security)

cencrypt

k k

decrypt mc

Example: Precise assumptions (3)

u computing setting
u system set up, initial state, key distribution, randomness…

u means of communication (e.g., channels, rounds, messages…)
u timing assumptions (e.g., synchronicity, epochs, …)

46

Eve

Alice Bobm

key k is generated
randomly using
the uniform
distribution

cencrypt

k k

decrypt mc

key k is securely distributed to and securely stored at Alice and Bob

one message m is only communicated
(for simplicity in our initial security definition)

k, m are chosen independently

Possible eavesdropping attacks (I)
An attacker may possess a

u (a) collection of ciphertexts
u ciphertext only attack

u this will be the default attack type
when we will next define the
concept of perfect security

47

Hi, Bob.
Don’t invite

Eve to the
party!

Love, Alice

Encryption
Algorithm

plaintext ciphertext

key

Eve

(a)

Possible eavesdropping attacks (II)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

48

Hi, Bob.
Don’t invite

Eve to the
party!

Love, Alice

plaintext ciphertext

key

(b)

Eve

Encryption
Algorithm

Possible eavesdropping attacks (III)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

u (c) collection of plaintext/ciphertext pairs
 for plaintexts selected by the attacker

u chosen plaintext attack

49

ciphertext
ABCDEFG

HIJKLMNO
PQRSTUV

WXYZ.

plaintext

key

(c)

Eve

Encryption
Algorithm

Possible eavesdropping attacks (IV)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

u (c) collection of plaintext/ciphertext pairs
 for plaintexts selected by the attacker

u chosen plaintext attack

u (d) collection of plaintext/ciphertext pairs
 for (plaintexts and) ciphertexts selected
 by the attacker

u chosen ciphertext attack

50

IJCGA, CAN DO
HIFFA GOT
TIME.

plaintext ciphertext

key

001101
110111

(d)

Eve

Decryption
Algorithm

Main security properties against eavesdropping
“plain” security

u protects against ciphertext-only attacks

u EAV-attack

“advanced” security

u protects against chosen plaintext attacks

u CPA-attack

51

Hi, Bob.
Don’t invite

Eve to the
party!

Love, Alice

Encryption
Algorithm

plaintext ciphertext

key

Eve

ciphertext
ABCDEFG

HIJKLMNO
PQRSTUV

WXYZ.

plaintext

key

Eve

Encryption
Algorithm

ATΠ

Game-based computational EAV-security

52

m0, m1

Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is EAV-secure if any PPT adversary A guesses b correctly with
probability at most 0.5 + ε(n), where ε is a negligible function

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing

ATΠ

Game-based computational EAV-security

53

m0, m1

Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is EAV-secure if any PPT adversary A guesses b correctly with
probability at most 0.5 + ε(n), where ε is a negligible function

Alternatively:
“is semantically secure”

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing

ATΠ

Game-based computational CPA-security

54

m0, m1Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is CPA-secure if any PPT adversary A guesses b correctly with
probability at most 0.5 + ε(n), where ε is a negligible function

mi

ci
Enc(k,)

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing,
even when it learns the encryptions of messages of its choice

On CPA security

Facts

u Any encryption scheme that is CPA-secure is also CPA-secure for multiple encryptions

u CPA security implies randomized encryption – can you see why?

u EAV-security for multiple messages implies randomized encryption

55

The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

56

C) Provably security

Security

u subject to certain assumptions, a scheme is proved to be secure according to a
specific definition, against a specific adversary

u in practice the scheme may break if

u some assumptions do not hold or the attacker is more powerful

Insecurity

u a scheme is proved to be insecure with respect to a specific definition

u it suffices to find a counterexample attack

57

Why provable security is important?

Typical performance

u in some areas of computer science
formal proofs may not be essential
u simulate hard-to-analyze algorithm to

experimentally study
its performance on “typical” inputs

u in practice, typical/average case occurs

Worst case performance

u in cryptography and secure protocol design
formal proofs are essential

u “experimental” security analysis is not possible

u the notion of a “typical” adversary makes little
sense and is unrealistic

u in practice, worst case attacks will occur
u an adversary will use any means

in its power to break a scheme

58

4.4 Pseudorandom
generators
(or stream ciphers)

59

Stream ciphers

60

EncryptionPlaintext Ciphertext

… RESTUOKD … rrywytovty

key

state

Pseudorandom generators (PRGs)

Deterministic algorithm G that
on input a seed s∈{0,1}t, outputs G(s)∈{0,1}l(t)

G is a PRG if:

u expansion

u for polynomial l, it holds that for any n, l(n) > n

u models the process of extracting randomness from a short random string

u pseudorandomness

u no efficient statistical test can tell apart G(s) from a truly random string
61

s G(s) l(n)n
PRG

G

a.k.a. stream cipher

Generic PRG-based symmetric encryption

u Fixed-length message encryption

62

encryption scheme is plain-secure
as long as the underlying PRG is secure

Generic PRG-based symmetric encryption (cont.)

u Bounded- or arbitrary-length message encryption
u specified by a mode of operation for using an underlying stateful stream cipher,

repeatedly, to encrypt/decrypt a stream of symbols

63

Stream ciphers: Modes of operations

u Bounded- or arbitrary-length message encryption

64

on-the-fly computation of new pseudorandom bits, no IV needed, plain-secure

random IV used for every new message is sent along with ciphertext, advanced-secure

