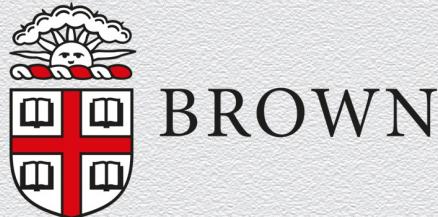


<https://brown-csci1660.github.io>


CS1660: Intro to Computer Systems Security

Spring 2026

Lecture 4: Confidentiality II

Instructor: **Nikos Triandopoulos**

February 3, 2026

CS1660: Announcements

- ◆ Course updates
 - ◆ Project 1 “Cryptography” is out
 - ◆ Reminder
 - ◆ Enrolling to advanced version (via 1620 or 2660) is only for educational purposes
 - ◆ Only for this term: It’s unrelated to “Capstone”

Last class

- ◆ Cryptography
 - ◆ Secret communication
 - ◆ Symmetric-key encryption & classical ciphers
 - ◆ Perfect secrecy & the One-Time Pad

Today

- ◆ Cryptography
 - ◆ Encryption in practice
 - ◆ Computational security, pseudo-randomness
 - ◆ Stream & block ciphers, modes of operations for encryption, DES & AES
 - ◆ Introduction to modern cryptography

4.1 Symmetric encryption, revisited: OTP with pseudorandomness

Big picture

Secret communication

- ◆ We learned what it means for a cipher to be perfectly secure
- ◆ We learned that the simple OTP cipher achieves this property
 - ◆ XOR (**mask**) message (**once**) with the secret key (**random pad**)
 - ◆ ...but it cannot be used in practice!
- ◆ We learned how we can fix this problem
 - ◆ just use OTP with a freshly-generated “**random looking**” pads
 - ◆ **mask** each message **once** with a **pseudorandom pad**

Big picture (cont.)

Secret communication

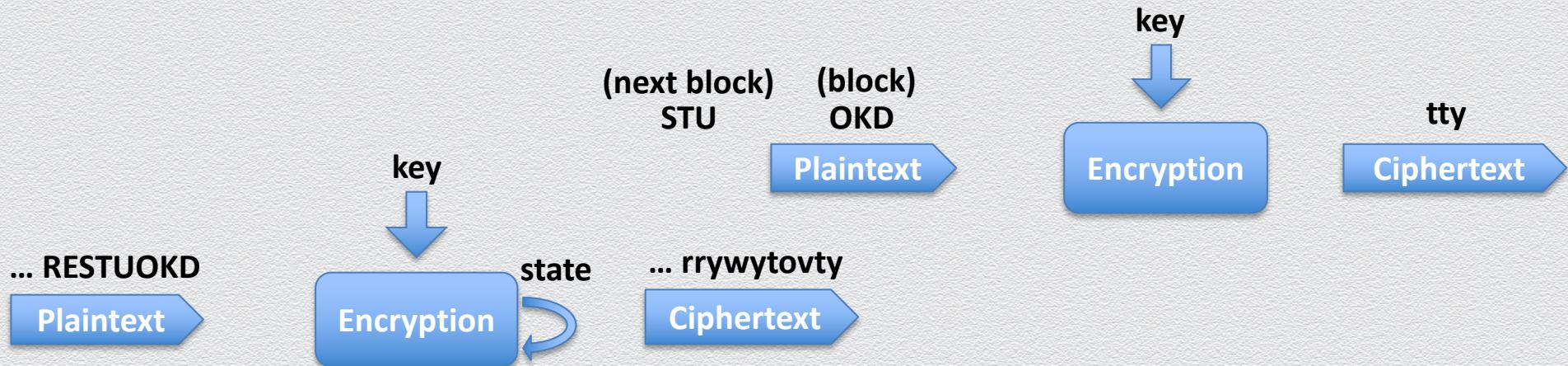
- ◆ But there is no free lunch...
 - ◆ if we **mask** each message **once** with a **pseudorandom pad**, we must lose **perfect** secrecy!
 - ◆ because “**random looking**” pads are not **random**...
- ◆ But not perfect won’t be imperfect – it will be close to perfect
 - ◆ for all practical purposes
 - ◆ “**random looking**” pads will be as random as **truly random** ones
 - ◆ **OTP + pseudo-randomness** will be as secure as (standard) **OTP**

Perfect secrecy & randomness

Role of randomness in encryption is **integral**

- ◆ in a perfectly secret cipher, the ciphertext **doesn't depend** on the message
 - ◆ the ciphertext appears to be **truly random**
 - ◆ the uniform key-selection distribution **is imposed also onto** produced ciphertexts
 - ◆ e.g., $c = k \text{ XOR } m$ (for uniform k and any distribution over m)

When security is computational, randomness is **relaxed** to “pseudorandomness”


- ◆ the ciphertext appears to be “**pseudorandom**”
 - ◆ **it cannot be efficiently distinguished** from truly random

Symmetric encryption as “OPT with pseudorandomness”

Stream cipher

Uses a **short** key to encrypt **long** symbol **streams** into a **pseudorandom** ciphertext

- ◆ based on abstract crypto primitive of **pseudorandom generator (PRG)**

4.2 Computational security

The big picture: OTP is perfect but impractical!

We formally defined and constructed the perfectly secure OTP cipher

- ◆ This scheme has some major drawbacks
 - ◆ it employs a very large key which can be used only once!
- ◆ Such limitations are unavoidable and make OTP not practical
 - ◆ why?

Now, what?

Our approach: Relax perfectness for cipher security

Initial model

- ◆ **Perfect secrecy** (or security) guarantees that
 - ◆ the ciphertext leaks (absolutely) **no extra information** about the plaintext
 - ◆ (unconditionally) to adversaries of **unlimited computational power**

Refined model

- ◆ **Computational security** guarantees a relaxed notion of security, namely that
 - ◆ the ciphertext leaks **a tiny amount of extra information** about the plaintext
 - ◆ to adversaries with **bounded computational power**

Computational security

General concept in Cryptography

Computational security of a cryptographic scheme guarantees that

- ◆ (1) the scheme can be broken only with **a tiny likelihood**
- ◆ (2) by adversaries with **bounded computational power**

In contrast to **perfect** or **information-theoretic** or **unconditional security**

- ◆ which is typically harder, more costly or, often impossible, to achieve

Computational security (cont.)

General concept in Cryptography

- ◆ *de facto* model for security in most settings
 - ◆ based on an underlying hardness (computational) assumption
 - ◆ integral part of modern cryptography
 - ◆ still allowing for rigorous mathematical proof of security
- ◆ **Asymptotic** description of results

“A scheme is **computationally secure** if any efficient attacker succeeds in breaking it with at most negligible probability”

Computational security (cont.)

General concept in Cryptography

- ◆ entails two relaxations
 - ◆ security is guaranteed against **efficient** adversaries
 - ◆ if an attacker invests in **sufficiently large resources**, it may break security
 - ◆ goal: make required resources larger than those available to any realistic attacker!
 - ◆ security is guaranteed in a **probabilistic** manner
 - ◆ with some **small probability**, an attacker may break security
 - ◆ goal: make attack probability sufficiently small so that it can be practically ignored!

Security relaxation for encryption

Perfect security: $|k| = 128$ bits, M , $\text{Enc}_K(M)$ are independent, **unconditionally**

- ◆ no extra information is leaked to any attacker

Computational security: M , $\text{Enc}_K(M)$ are independent, **for all practical purposes**

- ◆ no extra information is leaked **but a tiny amount**
 - ◆ e.g., with prob. 2^{-128} (or much less than the likelihood of being hit by lightning)
- ◆ to **computationally bounded** attackers
 - ◆ e.g., who cannot count to 2^{128} (or invest work of more than one century)
- ◆ attacker's best strategy remains **ineffective**
 - ◆ **random guess** a secret key or **exhaustive search** over key space (brute-force attack)

Towards a rigorous definition of computational security

Concrete approach

- ◆ “A scheme is (t, ε) -secure if any attacker A , running for time at most t , succeeds in breaking the scheme with probability at most ε ”

Asymptotic approach

- ◆ “A scheme is secure if any efficient attacker A succeeds in breaking the scheme with at most negligible probability”

Examples

- ◆ almost optimal security guarantees
 - ◆ if key length n , the number of possible keys is 2^n
 - ◆ attacker running for time t succeeds w/ prob. at most $\sim t/2^n$ (brute-force attack)
- ◆ if $n = 60$, security is enough for attackers running a desktop computer
 - ◆ 4 GHz (4×10^9 cycles/sec), checking all 2^{60} keys require about 9 years
 - ◆ if $n = 80$, a supercomputer would still need ~ 2 years
- ◆ today's recommended security parameter is at least $n = 128$
 - ◆ large difference between 2^{80} and 2^{128} ; e.g., #seconds since Big Bang is $\sim 2^{58}$
 - ◆ a once-in-100-years event corresponds to probability 2^{-30} of happening at a particular sec
 - ◆ if within 1 year of computation attack is successful w/ prob. $1/2^{60}$
then it is more likely that Alice and Bob are hit by lighting

Examples: Big Numbers in the real world

- ◆ Odds for all 5 numbers + Powerball
 - ◆ $292 \times 10^6 \Rightarrow 2^{38}$
- ◆ The Age of the Universe in Seconds
 - ◆ $4.3 \times 10^{17} \Rightarrow 2^{58}$
- ◆ # of cycles in a century of a 4 GHz CPU $\Rightarrow 2^{64}$
- ◆ # of arrangements of a Rubik's cube $4.3 \times 10^{19} \Rightarrow 2^{65}$
- ◆ Atoms in the Earth $1.33 \times 10^{50} \Rightarrow 2^{166}$
- ◆ Electrons in the universe $10^{80} \Rightarrow 2^{266}$

4.3 Introduction to modern cryptography

Cryptography / cryptology

- ◆ Etymology
 - ◆ two parts: “crypto” + “graphy” / “logy”
 - ◆ original meaning: κρυπτός + γράφω / λόγος (in Greek)
 - ◆ English translation: secret + write / speech, logic
 - ◆ meaning: secret writing / the study of secrets
- ◆ Historically developed/studied for secrecy in communications
 - ◆ i.e., message encryption in the symmetric-key setting
 - ◆ main application area: use by military and governments

Classical cryptography Vs. modern cryptography

antiquity – ~70s

- ◆ “*the art or writing and solving codes*”
- ◆ approach
 - ◆ ad-hoc design
 - ◆ trial & error methods
 - ◆ empirically evaluated

~80s – today

- ◆ “*the study of **mathematical techniques** for **securing** digital information, systems, and distributed computations against **adversarial attacks***”
- ◆ approach
 - ◆ systematic development & analysis
 - ◆ formal notions of security / adversary
 - ◆ rigorous proofs of security (or insecurity)

Example: Classical Vs. modern cryptography for encryption

antiquity – ~70s

*“the **art of writing and solving codes**”*

- ◆ **ad-hoc study**

- ◆ vulnerabilities/insecurity of
 - ◆ Caesar's cipher
 - ◆ shift cipher
 - ◆ mono-alphabetic substitution cipher

~80s – today

*“the study of **mathematical techniques** for **securing** information, systems, and distributed computations against **adversarial attacks**”*

- ◆ **rigorous study**

- ◆ **problem statement:** secret communication over insecure channel
- ◆ **abstract solution concept:** symmetric encryption, Kerckhoff's principle, perfect secrecy
- ◆ **concrete solution & analysis:** OTP cipher, proof of security

Example: Differences of specific ciphers

Caesar's/shift/mono-alphabetic cipher

- ◆ substitution ciphers
 - ◆ Caesar's cipher
 - ◆ **shift is always 3**
 - ◆ shift cipher
 - ◆ **shift is unknown but the same for all characters**
 - ◆ mono-alphabetic substitution/Vigènere cipher
 - ◆ **shift is unknown but the same for all/many character occurrences**

The one-time pad

- ◆ also, a substitution cipher
 - ◆ **shift is unknown and independent for each character occurrence**

Approach in modern cryptography

Formal treatment

- ◆ **fundamental notions** underlying the **design & evaluation** of crypto primitives

Systematic process

- ◆ A) **formal definitions** (what it means for a crypto primitive to be “secure”?)
- ◆ B) **precise assumptions** (which forms of attacks are allowed – and which aren’t?)
- ◆ C) **provable security** (why a candidate instantiation is indeed secure – or not?)

Secure against what?

- ◆ “Security” has no meaning per se...
- ◆ The security of a system, application, or protocol is always relative to
 - ◆ A set of desired properties
 - ◆ An adversary with specific capabilities
- ◆ Difficult to define general rules for security
 - ◆ Adapt best practices, heuristics based on the system we are considering!

Example: Physical safes

TL-15 (\$3,000)
15 minutes with
common tools

TL-30 (\$4,500)
30 minutes with
common tools

TRTL-30 (\$10,000)
30 minutes with
common tools and a
cutting torch

TXTL-60 (>\$50,000)
60 minutes with
common tools, a
cutting torch, and up
to 4 oz of explosives

The 3 pillars in Cryptography

- ◆ We have already been familiar with:
 - ◆ A) formal definitions
 - ◆ B) precise assumptions
 - ◆ C) provable security
- ◆ Let's remind ourselves...

The 3 pillars in Cryptography

- ◆ We have already been familiar with:
 - ◆ **A) formal definitions**
 - ◆ B) precise assumptions
 - ◆ C) provable security
- ◆ Let's remind ourselves...

A) Formal definitions

abstract but rigorous description of security problem

- ◆ **computing setting** (to be considered)
 - ◆ involved parties, communication model, core functionality
- ◆ **underlying cryptographic scheme** (to be designed)
 - ◆ e.g., symmetric-key encryption scheme
- ◆ **desired properties** (to be achieved)
 - ◆ security related
 - ◆ non-security related
 - ◆ e.g., correctness, efficiency, etc.

Why formal definitions are important?

- ◆ **successful project management**
 - ◆ good design requires clear/specific security goals
 - ◆ helps to avoid critical omissions or over engineering
- ◆ **provable security**
 - ◆ rigorous evaluation requires a security definition
 - ◆ helps to separate secure from insecure solutions
- ◆ **qualitative analysis/modular design**
 - ◆ thorough comparison requires an exact reference
 - ◆ helps to secure complex computing systems

Example: Problem at hand

abstract but rigorous description of **security problem** (to be solved)

secret communication

Insecure channel

Example: Formal definitions (1)

- ◆ computing setting (to be considered)

- ◆ e.g., involved parties, communication model, core functionality

Alice, Bob, Eve

Alice wants to send a message m to Bob; Eve can eavesdrop sent messages

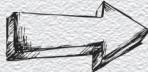
Alice/Bob may transform the transmitted/received message and share info

Alice m

Bob

Example: Formal definitions (2)

- ◆ **underlying cryptographic scheme** (to be designed)


→ symmetric-key encryption scheme

- ◆ Alice and Bob share and use a key k
- ◆ Alice encrypts plaintext m to ciphertext c and sends c instead of m
- ◆ Bob decrypts received c to get a message m'

Example: Formal definitions (3)

- ◆ **desired properties** (to be achieved)

- ◆ **security (informal)** Eve “cannot learn” m (from c)

- ◆ **correctness (informal)**

- If Alice encrypts m to c , then Bobs decrypts c to (the original message) m

Example: Probabilistic view of symmetric encryption

A symmetric-key encryption scheme is defined by

- ◆ a **message space \mathcal{M}** , $|\mathcal{M}| > 1$, and a triple **(Gen, Enc, Dec)**
- ◆ **Gen**: probabilistic key-generation algorithm, defines **key space \mathcal{K}**
 - ◆ $\text{Gen}(1^n) \rightarrow k \in \mathcal{K}$ (security parameter n)
- ◆ **Enc**: probabilistic encryption algorithm, defines **ciphertext space \mathcal{C}**
 - ◆ $\text{Enc}: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$, $\text{Enc}(k, m) = \text{Enc}_k(m) \rightarrow c \in \mathcal{C}$
- ◆ **Dec**: deterministic encryption algorithm
 - ◆ $\text{Dec}: \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M}$, $\text{Dec}(k, c) = \text{Dec}_k(c) := m \in \mathcal{M}$ or \perp

Example: Formal definitions (4)

Perfect correctness

- for any $k \in \mathcal{K}$, $m \in \mathcal{M}$ and any ciphertext c output of $\text{Enc}_k(m)$, it holds that

$$\Pr[\text{Dec}_k(c) = m] = 1$$

Perfect security (or information-theoretic security)

- the adversary should be able to learn no additional information on m

random experiment
 $\mathcal{D}_{\mathcal{M}} \rightarrow m$

$\mathcal{D}_{\mathcal{K}} \rightarrow k$

$\text{Enc}_k(m) \rightarrow c$

$$m = \begin{cases} \text{attack} & \text{w/ prob. 0.8} \\ \text{no attack} & \text{w/ prob. 0.2} \end{cases}$$

Eve's view
remains
the same!

$$m = \begin{cases} \text{attack} & \text{w/ prob. 0.8} \\ \text{no attack} & \text{w/ prob. 0.2} \end{cases}$$

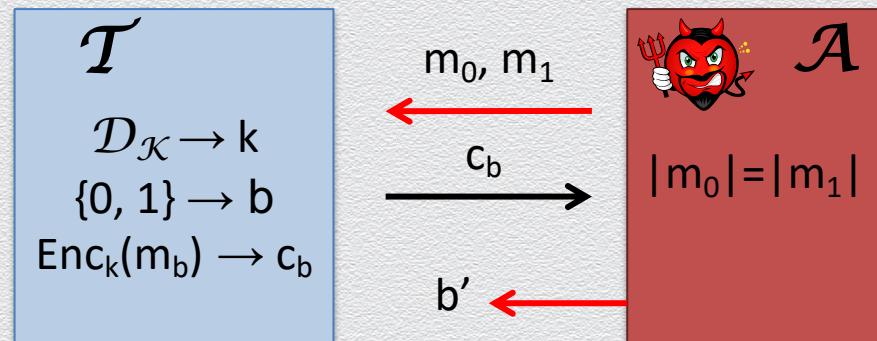
Example: Equivalent definitions of perfect security

1) a posteriori = a priori

For every \mathcal{D}_M , $m \in \mathcal{M}$ and $c \in C$, for which $\Pr [C = c] > 0$, it holds that

$$\Pr[M = m \mid C = c] = \Pr[M = m]$$

2) C is independent of M


For every $m, m' \in \mathcal{M}$ and $c \in C$, it holds that

$$\Pr[\text{Enc}_k(m) = c] = \Pr[\text{Enc}_k(m') = c]$$

3) indistinguishability

For every \mathcal{A} , it holds that

$$\Pr[b' = b] = 1/2$$

From perfect to computational EAV-security

- ◆ **perfect** security: $M, \text{Enc}_K(M)$ are independent
 - ◆ absolutely **no information is leaked** about the plaintext
 - ◆ to adversaries that **unlimited computational power**
- ◆ **computational** security: for all **practical** purposes, $M, \text{Enc}_K(M)$ are independent
 - ◆ **a tiny amount of information is leaked** about the plaintext (e.g., w/ prob. 2^{-60})
 - ◆ to adversaries with **bounded computational power** (e.g., attacker invests 200ys)
- ◆ attacker's **best strategy** remains **ineffective**
 - ◆ **random guess** on secret key; or
 - ◆ **exhaustive search** over key space (**brute force attack**)

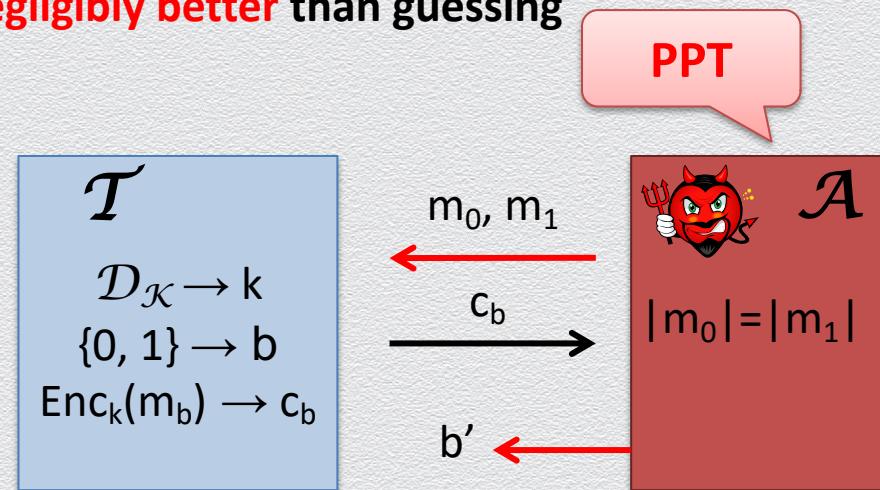
Relaxing indistinguishability

Relax the definition of perfect secrecy – that is based on indistinguishability

- ◆ require that m_0, m_1 are chosen by a **PPT adversary**
- ◆ require that no **PPT adversary** can distinguish $\text{Enc}_k(m_0)$ from $\text{Enc}_k(m_1)$

non-negligibly better than guessing

PPT


3) indistinguishability

For every \mathcal{A} , it holds that

$$\Pr[b' = b] = 1/2 + \text{negl}$$

PPT

negl

The 3 pillars in Cryptography

- ◆ We have already been familiar with:
 - ◆ A) formal definitions
 - ◆ **B) precise assumptions**
 - ◆ C) provable security
- ◆ Let's remind ourselves...

B) Why precise assumptions are important?

- ◆ **basis** for proofs of security
 - ◆ security holds under specific assumptions
- ◆ **comparison** among possible solutions
 - ◆ relations among different assumptions
 - ◆ stronger/weaker (i.e., less/more plausible to hold), “A implies B” or “A and B are equivalent”
 - ◆ refutable Vs. non-refutable
- ◆ **flexibility** (in design & analysis)
 - ◆ **validation** – to gain confidence or refute
 - ◆ **modularity** – to choose among concrete schemes that satisfy the same assumptions
 - ◆ **characterization** – to identify simplest/minimal/necessary assumptions

Example: Precise assumptions (1)

- ◆ **adversary**

- ◆ type of attacks – a.k.a. **threat model** **eavesdropping**
- ◆ **capabilities** (e.g., a priori knowledge, access to information, party corruptions)
- ◆ **limitations** (e.g., bounded memory, passive Vs. active)

 Eve may know the a priori distribution of messages sent by Alice

 Eve doesn't know/learn the secret k (shared by Alice and Bob)

Example: Precise assumptions (2)

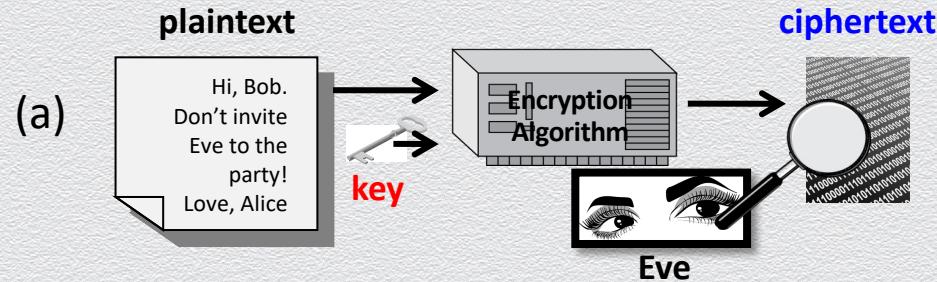
- ◆ **computational assumptions** (about hardness of certain tasks)
 - ◆ e.g., factoring of large composite numbers is hard

no computational assumptions
– a.k.a. perfect secrecy (or information-theoretic security)

Example: Precise assumptions (3)

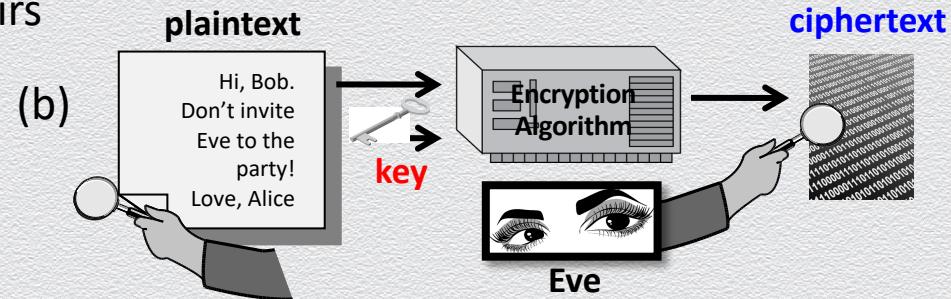
- ◆ **computing setting**
 - ◆ **system set up**, initial state, **key distribution**, **randomness**... key k is generated randomly using the uniform distribution
 - ◆ means of **communication** (e.g., channels, rounds, messages...)
 - ◆ timing assumptions (e.g., synchronicity, epochs, ...)

 key k is securely distributed to and securely stored at Alice and Bob


 one message m is only communicated (for simplicity in our initial security definition) k, m are chosen independently

Possible eavesdropping attacks (I)

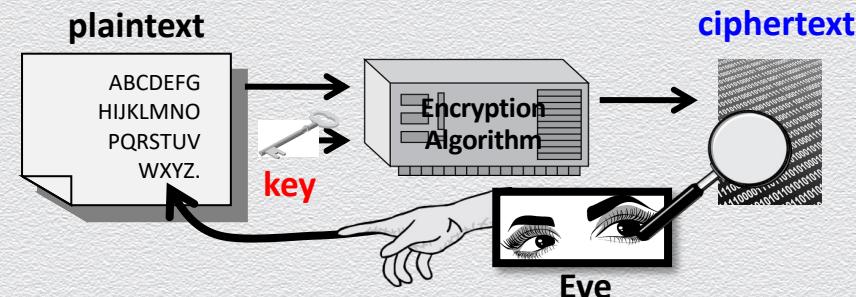
An attacker may possess a


- ◆ (a) collection of ciphertexts
 - ◆ **ciphertext only attack**
 - ◆ this will be the **default attack type** when we will next define the concept of perfect security

Possible eavesdropping attacks (II)

An attacker may possess a

- ◆ (a) collection of ciphertexts
 - ◆ **ciphertext only attack**
- ◆ (b) collection of plaintext/ciphertext pairs
 - ◆ **known plaintext attack**

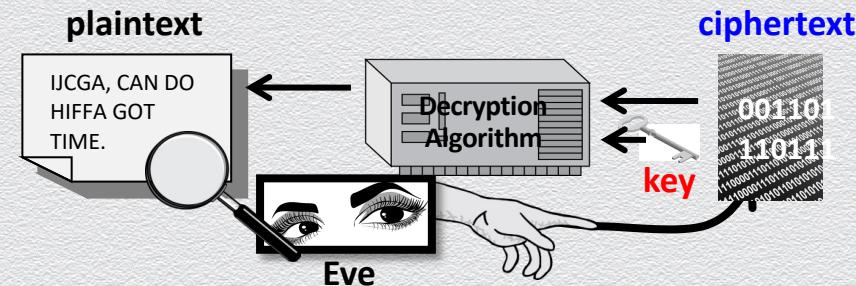


Possible eavesdropping attacks (III)

An attacker may possess a

- ◆ (a) collection of ciphertexts
 - ◆ **ciphertext only attack**
- ◆ (b) collection of plaintext/ciphertext pairs
 - ◆ **known plaintext attack**
- ◆ (c) collection of plaintext/ciphertext pairs for plaintexts selected by the attacker
 - ◆ **chosen plaintext attack**

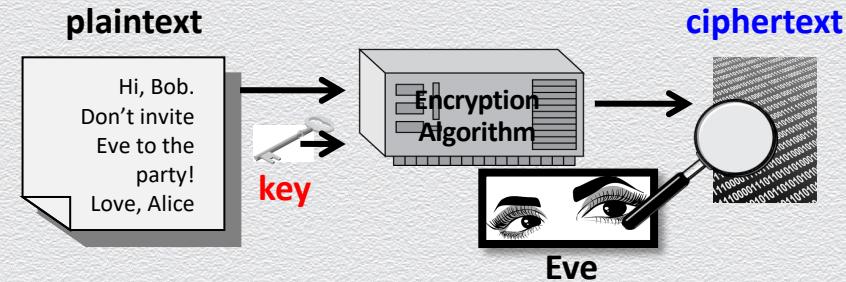
(c)



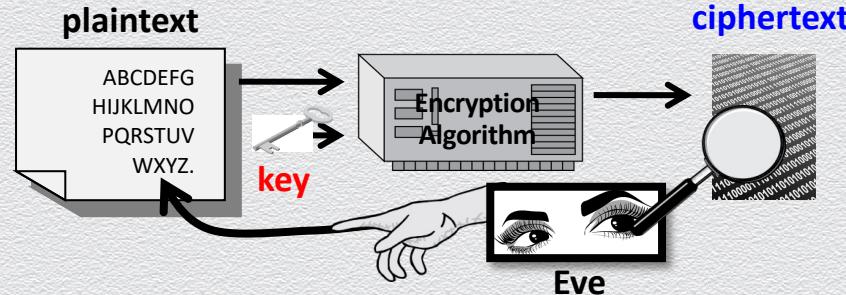
Possible eavesdropping attacks (IV)

An attacker may possess a

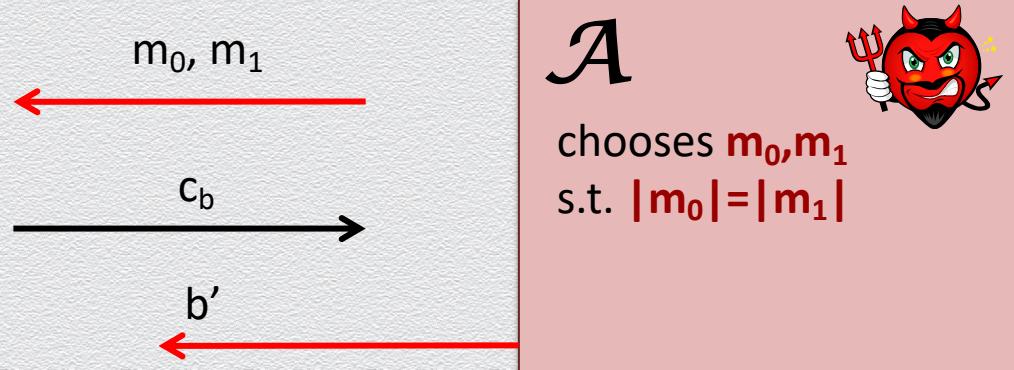
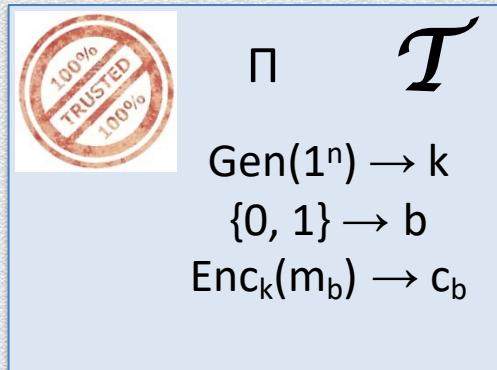
- ◆ (a) collection of ciphertexts
 - ◆ **ciphertext only attack**
- ◆ (b) collection of plaintext/ciphertext pairs
 - ◆ **known plaintext attack**
- ◆ (c) collection of plaintext/ciphertext pairs for plaintexts selected by the attacker
 - ◆ **chosen plaintext attack**
- ◆ (d) collection of plaintext/ciphertext pairs for (plaintexts and) ciphertexts selected by the attacker
 - ◆ **chosen ciphertext attack**


(d)

Main security properties against eavesdropping


“plain” security

- ◆ protects against ciphertext-only attacks
 - ◆ EAV-attack



“advanced” security

- ◆ protects against chosen plaintext attacks
 - ◆ CPA-attack

Game-based computational EAV-security

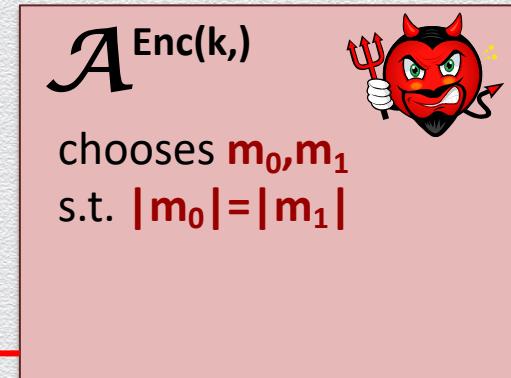
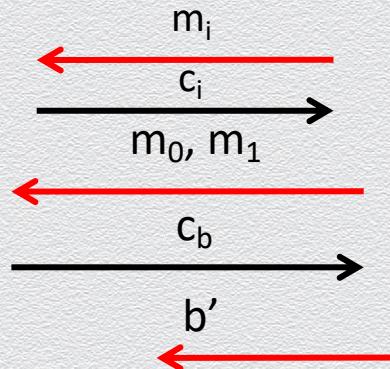
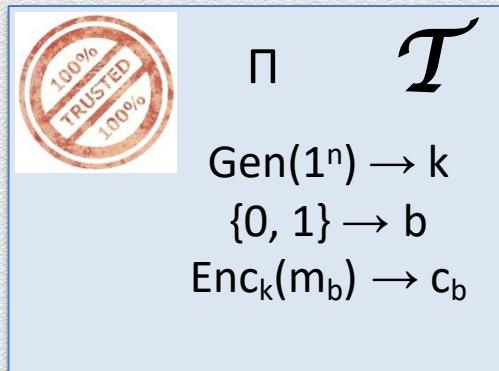
encryption scheme $\Pi = \{\mathcal{M}, (\text{Gen}, \text{Enc}, \text{Dec})\}$

We say that (Enc, Dec) is **EAV-secure** if any PPT adversary \mathcal{A} guesses b correctly with probability at most $0.5 + \varepsilon(n)$, where ε is a negligible function

i.e., no PPT \mathcal{A} computes b correctly non-negligibly better than randomly guessing

Game-based computational EAV-security

encryption scheme $\Pi = \{\mathcal{M}, (\text{Gen}, \text{Enc}, \text{Dec})\}$

We say that (Enc, Dec) is **EAV-secure** if any PPT adversary \mathcal{A} guesses b correctly with probability at most $0.5 + \varepsilon(n)$, where ε is a negligible function

i.e., no PPT \mathcal{A} computes b correctly non-negligibly better than randomly guessing

Game-based computational CPA-security

encryption scheme $\Pi = \{\mathcal{M}, (\text{Gen}, \text{Enc}, \text{Dec})\}$

We say that (Enc, Dec) is **CPA-secure** if any PPT adversary \mathcal{A} guesses b correctly with probability at most $0.5 + \varepsilon(n)$, where ε is a negligible function

I.e., no PPT \mathcal{A} computes b correctly non-negligibly better than randomly guessing,
even when it learns the encryptions of messages of its choice

On CPA security

Facts

- ◆ Any encryption scheme that is CPA-secure is also CPA-secure for multiple encryptions
- ◆ **CPA security implies randomized encryption – can you see why?**
- ◆ EAV-security for multiple messages implies randomized encryption

The 3 pillars in Cryptography

- ◆ We have already been familiar with:
 - ◆ A) formal definitions
 - ◆ B) precise assumptions
 - ◆ **C) provable security**
- ◆ Let's remind ourselves...

C) Provably security

Security

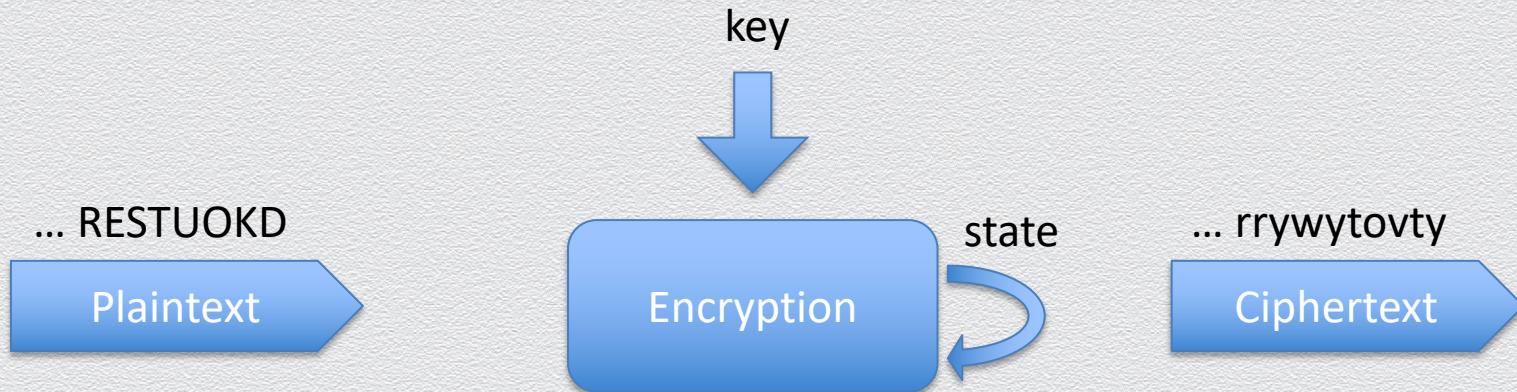
- ◆ subject to certain **assumptions**, a scheme is proved to be **secure** according to a specific **definition**, against a specific **adversary**
 - ◆ in practice the scheme may break if
 - ◆ some assumptions do not hold or the attacker is more powerful

Insecurity

- ◆ a scheme is proved to be **insecure** with respect to a specific **definition**
 - ◆ it suffices to find a **counterexample attack**

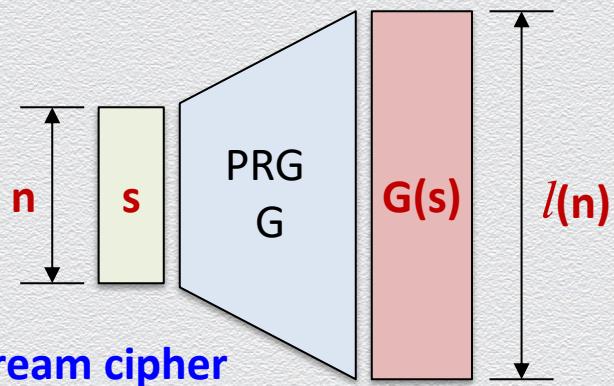
Why provable security is important?

Typical performance


- ◆ in some areas of computer science **formal proofs may not be essential**
- ◆ simulate hard-to-analyze algorithm to experimentally study its performance on “typical” inputs
- ◆ in practice, **typical/average case** occurs

Worst case performance

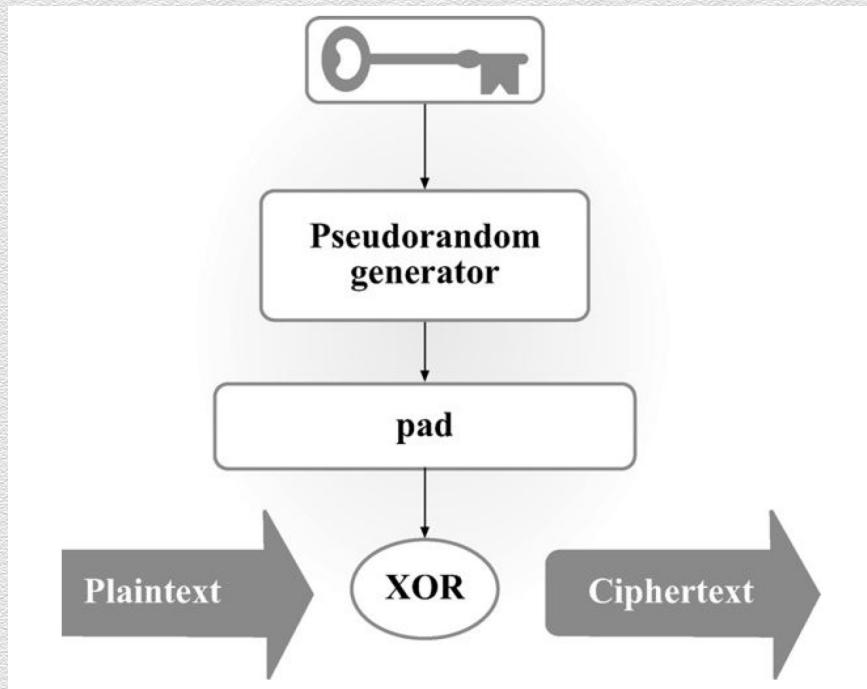
- ◆ in cryptography and secure protocol design **formal proofs are essential**
 - ◆ “experimental” security analysis is not possible
 - ◆ the notion of a “typical” adversary makes little sense and is unrealistic
- ◆ in practice, **worst case attacks will occur**
 - ◆ an adversary will use any means in its power to break a scheme


4.4 Pseudorandom generators (or stream ciphers)

Stream ciphers

Pseudorandom generators (PRGs)

Deterministic algorithm G that
on input a seed $s \in \{0,1\}^t$, outputs $G(s) \in \{0,1\}^{l(n)}$



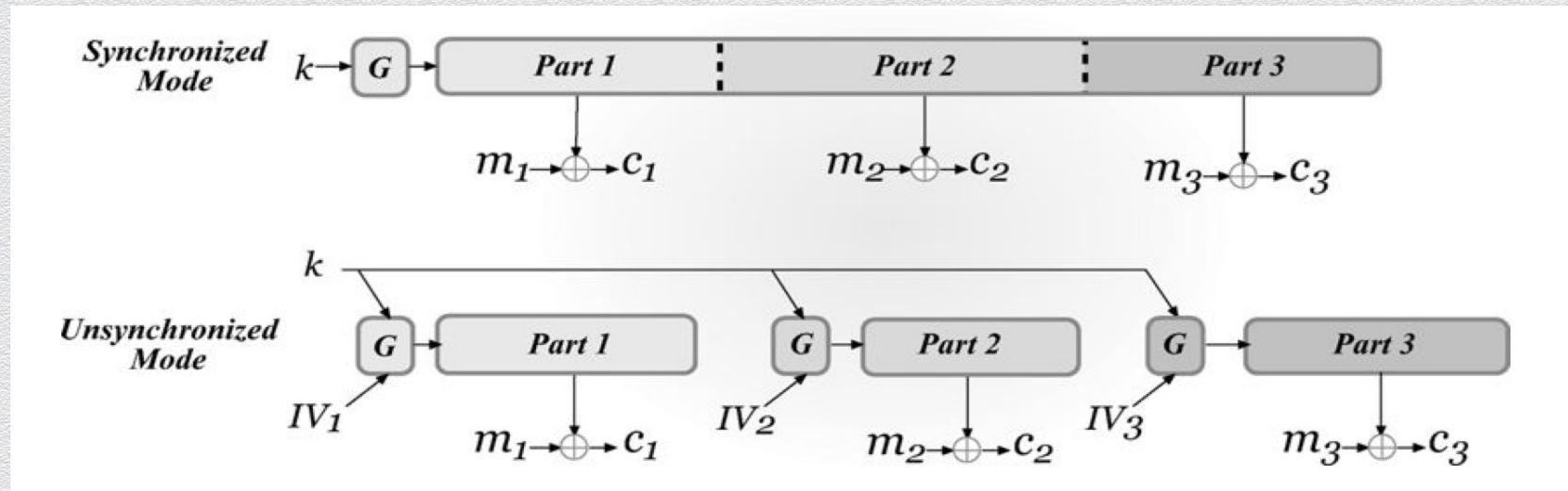
G is a PRG if:

- ◆ **expansion**
 - ◆ for polynomial l , it holds that for any n , $l(n) > n$
 - ◆ models the process of extracting randomness from a short random string
- ◆ **pseudorandomness**
 - ◆ no efficient statistical test can tell apart $G(s)$ from a truly random string

Generic PRG-based symmetric encryption

- ◆ **Fixed-length** message encryption

encryption scheme is plain-secure
as long as the underlying PRG is secure


Generic PRG-based symmetric encryption (cont.)

- ◆ **Bounded- or arbitrary-length** message encryption
 - ◆ specified by a mode of operation for using an underlying stateful stream cipher, repeatedly, to encrypt/decrypt a stream of symbols

Stream ciphers: Modes of operations

- ◆ **Bounded- or arbitrary-length** message encryption

on-the-fly computation of new pseudorandom bits, no IV needed, plain-secure

random IV used for every new message is sent along with ciphertext, advanced-secure